Fall Semester 2010

College of Sciences

Section 1

Quiz 3

21 October 2010

Closed book. No calculators are to be used for this quiz. Quiz duration: 10 minutes

Name:

Student ID:

Signature:

A particle of mass $m=\sqrt{2}$ kg is accelerated at 1 m/s² in the direction shown by \vec{a} , over a frictionless horizontal surface. The acceleration is caused by three horizontal forces, only two of which are shown: \vec{F}_1 of magnitude $2\sqrt{3}$ N and \vec{F}_2 of magnitude $\sqrt{3}$ N. What is the third force \vec{F}_3 in unit-vector notation?

Fall Semester 2010

College of Sciences

Section 2

Quiz 3

21 October 2010

Closed book. No calculators are to be used for this quiz. Quiz duration: 10 minutes

Name:

Student ID:

Signature:

Two particles of mass m=2 kg and M=3 kg are hung vertically over a frictionless pulley of negligible mass as shown in the figure. Determine the magnitude of acceleration of the two particles and the tension in the massless cord. (Take $g=10 \text{ m/s}^2$.)

Fall Semester 2010

College of Sciences

Section 3

Quiz 3

21 October 2010

Closed book. No calculators are to be used for this quiz. Quiz duration: 10 minutes

Name:

Student ID:

Signature:

Two particles of mass m=2 kg and M=3 kg are attached by a massless cord that passes over a frictionless pulley of negligible mass as shown in the figure. The particle of mass M lies on a frictionless incline of angle $\theta=30$ degrees. Determine the magnitude of the acceleration of the two particles and the tension in the cord. (Take g=10 m/s².)

Fall Semester 2010

College of Sciences

Section 4

Quiz 3

21 October 2010

Closed book. No calculators are to be used for this quiz. Quiz duration: 10 minutes

Name:

Student ID:

Signature:

A block of mass M is at rest on an adjustable inclined plane of angle θ and static coefficient of friction μ_s . Find the range of possible values of θ for which the block remains at rest.

If the system is at rest, from Newton's first law: $\Sigma f = 0$ so $N = Mgcos\theta$ $Fs = Mgsin\theta$

We also know that $f_s = M_s.N = M_s.Mgcos\theta$ If $Mgsin\theta > F_s$, then the block moves. We don't wont that.

Masino (Fs) is our condition.

Mysind < Ms. Mycoso

 $Ms \gg \frac{\sin \theta}{\cos \theta} = \tan \theta$

ton O & Ms

Fall Semester 2010

College of Sciences

Section 5

Quiz 3

21 October 2010

Closed book. No calculators are to be used for this quiz. Quiz duration: 10 minutes

Name:

Student ID:

Signature:

A block of mass m_1 moves at constant velocity on an inclined plane of angle θ and kinetic coefficient of friction μ_k . Find the m_2 in terms of m_1 , θ , and μ_k .

System moves with constant velocity, which means that zero acceleration. Then Newton's first law can be applied: $\Sigma F = 0$.

We know that $F_k = M_k \cdot N = M_k \cdot m_1 g \cos \theta$ and $m_2 g = T$.

